ZnO/TiO2 nanocomposites semiconductor for anti-bacterial applications and dye sensitized solar cell applications

Authors

  • N. Geetha Research Scholar, Bharathiyar University, Coimbatore,641046, India Author
  • S. Sivaranjani Department of Physics, SBM College of Engineering Technology, Dindigul, India Author
  • A. Ayeshamariam Department of Physics, Khadir Mohideen College, Adirampattinam, Tamilnadu,614701, India Author
  • Mariadhas Valan Arasu Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia Author
  • N. Punithavelan School of Advanced Sciences in Physics, Vellore Institute of Technology Chennai Campus, Chennai, Tamilnadu, India Author

DOI:

https://doi.org/10.56053/2.3.139

Keywords:

Nanoplatelets, Colloidal processing, TiO2, ZnO and biological strains

Abstract

The synthesis of high quality ZnO doped TiO2 nanoplatelets were synthesized by hydrothermal method at room temperature (RT). Composition, structure and micro morphology of the nanoplatelets were analyzed and determined by X-ray diffraction (XRD) confirms that crystal structure of doped (Zn-Ti-O) composition the identify peaks of (002), (100) and (101) clearly showed hexagonal wurtzite-type structure of ZnO with same lattice constants of the same; a=b=3.249 Å and c= 5.219 Å. From the XRD results revealed that crystal properties of the doped samples are improved without affecting the parent lattice. The morphological and optical properties of Zn-Ti-O nanosamples were characterized by scanning eelectron microscopy (SEM). TEM observation shows that the ZnO/TiO2 nanoplatelets synthesized by hydrothermal synthesis are well dispersed and the average crystallite size was found to be 10 nm. Biological applications of bacterial strains were calculated for these samples. The antibacterial activity of ZnO/TiO2 and its doping was evaluated on bacteria strains like Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. The results obtained in this study suggested that the ZnO/TiO2 and its doping have potential for use in the treatment of diseases caused by these test organisms.

References

-[1] J. Kolnik, M. Ozvold, Phys. Stat. Solidi (a) 122 (1990) 583

-[2] E. H. Rhoderick, Metal semiconductor contacts, Oxford University Press Oxford (1978)

-[3] K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Maaza, RSC Adv. 5 (2015) 82421

-[4] A. Ayeshamariam, M. Kashif, S. Arokiyaraj, M. Bououdina, M. G. Sankaracharayulu, M. Jayachandran, U. Hasim 9-3 (2014) 1007

-[5] T.V. Vimalkumar, N. Poornima, C. Sudha Kartha, K.P. Vijayakumar, Mater. Sci. Eng. B. 175 (2010) 29

-[6] M. Fouzri, A. Boukadhaba, M. Oumwzzine, Thin Sol. Films 520 (2012) 2582

-[7] N.L. Tarwal, V.V. Shinde, A.S. Kamble, P.R. Jadhav, D.S. Patil, V.B. Patil, P.S. Patil, Appl. Surf. Sci. 257 (2011) 10789

-[8] K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, Mat. Lett. 120 (2014) 243

-[9] S. Ilican, Y. Caglar, M. Caglar, J. Optoelectron. Adv. Mater. 10 (2008) 2578

-[10] S. Flickyngerova, K. Shtereva, V. Stenova, D. Hasko, I. Novotny, V. Tvarozek, P. Sutta, E. Vavrinsky, Appl. Surf. Sci. 254 (2008), 3643

-[11] H. Wang, R. Bhattacharjee, I.M. Hung, L. Li, Electrochim. Acta 111 (2013) 797

-[12] Law, M., Greene, L. E., Radenovic, A., Kuykendall, T., Liphardt, J., & Yang, P. The Journal of Physical Chemistry B 110 (2006) 22652

-[13] K.J. Chen, F.Y. Hung, Y.T. Chen, S.J. Chang, Mater. Trans. 51 (2010) 1340

-[14] K. Kaviyarasu, C. Maria Magdalane, A. Anand, E. Manikandan, M. Maaza Spectro. Acta. Part A: Mol. & Biomol. Spect. 142 (2015) 405

-[15] Wang, Meili, Changgang Huang, Yongge Cao, Qingjiang Yu, Wang Guo, Qiufeng Huang, Yuan Liu et al. Applied Physics Letters 26 (2009) 263506

-[16] Manthina, V., Correa Baena, J. P., Liu, G., & Agrios, A. G. Journal of Physical Chemistry C 116 (2012) 23864

-[17] S. Vadivel, G. Rajarajan. Journal of Materials Science: Materials in Electronics 5 (2015) 3155

-[18] C.S. Prajapati, Ajay Kushwaha, P.P. Sahay, Materials Chemistry and Physics 142 (2013) 276

-[19] Manthina, Venkata, Juan Pablo Correa Baena, Guangliang Liu, Alexander G. Agrios..Journal of Physical Chemistry C 116 (2012) 23864

- [20] J. Zuo, C. Xu, X. Liu, C. Wang, C. Wang, Y. Hu, Y. Qian, J. Appl. Phys. 75 (1994) 1835

-[21] A. Ayeshamariam, S. Ramalingam, M. Bououdina, M. Jayachandran, Spectro. Acta. Part A: Mol. & Biomol. Spect. 118 (2014) 1135

-[22]. A. Ayeshamariam, M. Kashif, S. Muthuraja, S. Sivaranjani, C. Sanjeeviraja, M. Bououdina, J. Kor. Phy. Soc. 64 (2014) 254

-[23] Mariadhas Valan Arasu, Naif Abdullah Al-Dhabi, Valsalam Saritha, Veeramuthu Duraipandiyan , Chinnasamy Muthukumar and Sun-Ju- Kim, Microbiology 13 (2013) 105

-[24] K. Kaviyarasu, E. Manikandan, M. Maaza, J. Alloys & Com. 648 (2015) 559

-[25] M. Kashif, I. Khaliq. International Journal of Agriculture and Biology 6 (2004) 138

-[26] G. Kiruthigaa, C. Manoharan, M. Bououdina, S. Ramalingam, C. Raju, Sol. St. Sci. 44 (2715) 32

- [27] S.S. Shinde, A.P. Korade, C.H. Bhosale, J. Alloys Com. 551 (2013) 688

-[28] Mariadhas Valan Arasu, Veeramuthu Duraipandiyan, Savarimuthu Ignacimuthu. Chemosphere 90 (2013) 479

-[29] Hussain Shahid et al. Materials Letters 118 (2014) 165

-[30] B. Li, L. Wang, B. Kang, P. Wang, Y. Qiu, Solar Energy Materials and Solar Cells 90 (2006) 549

-[31] D. I. Suh, S. Y. Lee, T. H. Kim, J. M. Chun, E. K. Suh, O. B. Yang, S. K. Lee, Chemical Physics Letters 442 (2007) 348

-[32] J. H. Yoon, S. R. Jang, R. Vittal, J. Lee, K. J. Kim, Journal of Photochemistry and Photobiology A: Chemistry 180 (2006) 184

-[33] P. J. Morrow, Nanotechnology Applications in Photovoltaic Technologies: Dye Sensitized Solar Cells. da Vinci's Notebook 9 (2012) 4

-[34] Du Pasquier, Aurelien, Hanhong Chen, Yicheng Lu, Applied Physics Letters 89 (2006) 253513

-[35] R. S. Mane, W. J. Lee, H. M. Pathan, S. H. Han, Journal of Physical Chemistry B 109 (2005) 24254

-[36] A. Qurashi, J. H. Kim, Y. B. Hahn. Superlattices and Microstructures 48 (2010) 162

Downloads

Published

2018-07-15

Issue

Section

Articles

How to Cite

ZnO/TiO2 nanocomposites semiconductor for anti-bacterial applications and dye sensitized solar cell applications. (2018). Experimental and Theoretical NANOTECHNOLOGY, 2(3), 139-150. https://doi.org/10.56053/2.3.139