Influence of three-hydroxy-2-naphthoic acid functionalized SWCNTs on the electrical and mechanical properties of poly (vinyl chloride)

Authors

  • M. Abu-Abdeen Physics Department, College of Science, King Faisal University, Alhasa, P.O. B 400, 31982, Saudi Arabia Author
  • A. I. Aboud Physics Department, College of Science, Cairo University, Giza, Egypt Author
  • M. H. Othman Physics Department, College of Science, Cairo University, Giza, Egypt Author
  • Nermeen kamal Misr university for science and technology, 6 October city-Almotamayz District-Egypt Author

DOI:

https://doi.org/10.56053/2.3.125

Keywords:

CNTs, Electrical Conductivity, Stress-Strain, Elastic moduli, Glass Transition

Abstract

Two main groups of samples were prepared. The first one was poly (vinyl chloride) (PVC) loaded with different concentrations of as received single walled carbon nanotubes (SWCNTs), while the second was PVC loaded with different concentrations of single walled carbon nanotubes functionalized with three-hydroxy-2-naphthoic acid (-HNA) at a concentration of 0.04wt%. The dc electrical conductivity and its temperature dependence of theses samples were investigated. Also, the tensile, rheological as well as the dynamical mechanical properties of all samples were studied. Functionalization of SWCNTs with -HNA was found to enhance the dc electrical conductivity, elastic modulus, tensile strength, complex viscosity, storage modulus and the glass transition temperature. The dc electrical conductivity had a percolation behavior with a percolation threshold concentration of 0.35 and 0.22wt% of un-functionalized and functionalized CNTs, respectively. The enhancement of the electrical and mechanical parameters with functionalized SWCNTs indicated well dispersion of CNTs due to formation of side functional groups on their sides.

References

-[1] S. Iijima, Nature 354 (1991) 56

-[2] R. Saito, K. Sato, Y. Oyama, J. Jiang, G.G. Samsonidze, G. Dresselhaus, M. Dresselhaus, Physical Review B 72 (2005) 153413

-[3] Z. Dang, L. Wang, L. Zhang, Journal of Nanomaterials 2006 (2006) 56

-[4] L. Meng, C. Fu, Q. Lu, Progress in Natural Science 19 (2009) 801

-[5] L. Evseeva, S. Tanaeva, Mechanics of Composite Materials 44 (2008) 87

-[6] P. Jindal, M. Goyal, N. Kumar, Int J Nanoelectronics and Materials 7 (2014) 85

- [7] P. Ma, N.A. Siddiqui, G. Marom, J. Kim, Composites Part A: Applied Science and Manufacturing 41 (2010) 1345

-[8] P. Costa, J. Silva, A. Ansón-Casaos, M.T. Martinez, M.J. Abad, J. Viana, S. Lanceros-Mendez, Composites Part B: Engineering 61 (2014) 136

-[9] W. Sears, Sensors Actuators B: Chem. 130 (2008) 661

-[10] E. Mickelson, C. Huffman, A. Rinzler, R. Smalley, R. Hauge, J. Margrave, Chemical Physics Letters 296 (1998) 188

-[11] N. Tagmatarchis and M. Prato, Journal of Materials Chemistry 14 (2004) 437

-[12] R. Yu, L. Chen, Q. Liu, J. Lin, K. Tan, S.C. Ng, H.S. Chan, G. Xu, T.A. Hor, Chemistry of Materials 10 (1998) 718

-[13] M. Sham, J. Kim, Carbon 44 (2006) 768

-[14] P.C. Ma, J. Kim, B.Z. Tang, Carbon 44 (2006) 3232

-[15] S. Wang, K. Chang, C. Yuan, Electrochim. Acta 54 (2009) 4937

-[16] K. Esumi, M. Ishigami, A. Nakajima, K. Sawada, H. Honda, Carbon 34 (1996) 279

-[17] R.A. Abdel-Rahem, A.S. Ayesh, S. Ibrahim, A.A. Al-Jaafari, N.S. Sheikh, E. Yasin, J. Dispersion Sci. Technol. 36 (2015) 747

-[18] E. Mendes, R. Oda, C. Manohar, J. Narayanan, The Journal of Physical Chemistry B 102 (1998) 338

-[19] R. Abdel-Rahem, H. Hoffmann, J. Colloid Interface Sci. 312 (2007) 146

-[20] R. Abdel-Rahem, Adv. Colloid Interface Sci. 141 (2008) 24

-[21] M. Abu-Abdeen, J Appl. Polym. Sci. 124 (2012) 3192

-[22] H. Fadda, M. Khanna, J. Santos, D. Osman, S. Gaisford, A. Basit, European Journal of Pharmaceutics and Biopharmaceutics 76 (2010) 493

-[23] M. Abu-Abdeen, A.S. Ayesh, A.A. Al Jaafari, Journal of Polymer Research 19 (2012) 1

-[24] A. Mutel and M. Kamal, Two Phase Polymer Systems 19 (1991) 305

-[25] T. Kitano, T. Kataoka, Rheologica Acta 19 (1980) 753

-[26] T. Kitano, T. Kataoka, Y. Nagatsuka, Rheologica Acta 23 (1984) 20

-[27] S. Anastasiadis, K. Chrissopoulou, B. Frick, Materials Science and Engineering: B 152 (2008) 33

-[28] M. Abu-Abdeen, Mater Des. 33 (2012) 523

-[29] J.D. Ferry, Viscoelastic properties of polymers, John Wiley & Sons (1980)

-[30] H.S. Nalwa, Encyclopedia of Nanoscience and Nanotechnology, CRC Press (2004)

-[31] R. Krishnamoorti, E.P. Giannelis, Macromolecules 30 (1997) 4097

-[32] P. Pötschke, T. Fornes, D. Paul, Polymer 43 (2002) 3247

-[33] M.I. Reddy, V.S. Reddy, ESRSA 3 (2014)

-[34] A.S. Ayesh, S. Ibrahim, A.A. Al-Jaafari, R.A. Abdel-Rahem, N.S. Sheikh, H.M. Kotb, J. Thermoplast. Compos. Mater. 28 (2015) 863

Downloads

Published

2018-07-15

Issue

Section

Articles

How to Cite

Influence of three-hydroxy-2-naphthoic acid functionalized SWCNTs on the electrical and mechanical properties of poly (vinyl chloride). (2018). Experimental and Theoretical NANOTECHNOLOGY, 2(3), 125-138. https://doi.org/10.56053/2.3.125