Theoretical investigation of slow-light VCSEL amplifier
DOI:
https://doi.org/10.56053/2.2.91Keywords:
Bragg reflectors, high power lasers, slow light, VCSEL.Abstract
We present numerical analysis of a slow-light vertical-cavity surface-emitting laser (VCSEL) amplifier basing on a travelling wave model. The model takes into account two oscillating modes; the vertical lasing mode and a slow light mode. We describe the amplification of the slow light mode through the amplifier when it is biased above the threshold level of the vertical lasing mode. The output power is investigated at different bias currents and lengths of the amplifier. The numerical results ascertain the possibility to obtain high gain more than 22 dB for amplifier length of 1 mm.
References
-[1] F. Koyama, J. Lightw. Technol. 24, 4502–4513 (2006).
-[2] Nikolay N. Ledentsov, James A. Lott, Jörg-R. Kropp, Vitaly A. Shchukin, and et.al, Proc. SPIE 8276, (2012).
-[3] M. Grabherr, M. Miller, D. Wiedenmann, R. Jäger and R. King, Proc. SPIE 6484 (2007).
-[4] M. Yoshikawa, A. Murakami, J. Sakurai, H. Nakayama and T. Nakamura, Proceedings Electronic Components and Technology, 2005. ECTC '05., 2, 1353-1358, (2005).
-[5] D. Zhou, J. Seurin, G. Xu, P. Zhao, B. Xu, T. Chen, R. van Leeuwen, J. Matheussen, Q. Wang and C. Ghosh, Proc, of SPIE, 9381 93810B-1 (2015).
-[6] F. Koyama and X. Gu, IEEE J. Sel. Topics in Quantu. Electron., 19, 1701510-1701510, (2013).
-[7] M. Miller, M. Grabherr, R. Jager and K. J. Ebeling, IEEE J. Photon. Techn. Letters, 13, 173-175, (2001).
-[8] J. W. Shi, K. L. Chi, J. H. Chang, Z. R. Wei, J. W. Jiang and Y. J. Yang, IEEE J. Photon., 5, 1502508-1502508, (2013).
-[9] A. Pruijmboom, R. Apetz, R. Conrads, C. Deppe, G. Derra, S. Gronenborn, J. S. Kolb, H. Moench, F. Ogiewa, P. Pekarski, et al., J. Laser Appl., 28, 032005,( 2016).
-[10] H. Moench, R. Conrads, C. Deppe, G. Derra, S. Gronenborn, Xi Gu, G. Heusler, J. Kolb, et.al, Proc. SPIE 9348, (2015).
-[11] Y-Qin Hao, Y. Luo, Y. Feng,1 Chang-Ling Yan,et al., J. Appl. Optic.,50, 1034-1037, (2011).
-[12] M. Nakahama, X. Gu, A. Matsutani, T. Sakaguchi and F. Koyama, Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, 1-2, (2016).
-[13] G. Hirano and F. Koyama, LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, Lake Buena Vista, FL, 86-87, (2007).
-[14] T. Baba, Nature Photonics, 2, 465 – 473, (2008).
-[15] H. R. Ibrahim, M. Ahmed and F. Koyama, 20th Microoptics Conference (MOC), Fukuoka, 1-2, (2015).
-[16] A. Y. Cho, A. Yariv, and P. Yeh, Appl. Phys. Lett., 30, 47,1 (1977).
-[17] P. Yeh, A. Yariv, and Emanuel Marom, J. Opt. Soc. Am, 68, 1196-1201, (1978).
-[18] Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, 2nd Edition, Wiley (2007).
-[19] Yasuki Sakurai and Fumio Koyama, Jpn. J. Appl. Phys. 43 5828, (2004).
-[20] L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, 2nd Edition., John Wiley & Sons, Inc.
-[21] M. J. Adams, J. V. Collins, and I. D. Henning, Proc. IEE Optoelectron., 132, 58–63, (1985).
-[22] T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, J. Lightw. Technol., 10, 1056–1065, (1992).
-[23] T. Shimada, A. Matsutani, and F. Koyama, Appl. Phys. Lett. 6, 2102, (2013).