Estimation of the stored energy of dislocation for plastically deformed 6082 heat treatable Al-Alloy

Authors

  • H. Ibrahim Physics Department, Faculty of Science, Minia University, Minia, Egypt Author
  • M. Abdel-Rahman Physics Department, Faculty of Science, Minia University, Minia, Egypt Author
  • Emad A. Badawi Physics Department, Faculty of Science, Minia University, Minia, Egypt Author
  • Minia University Physics Department, Faculty of Science, Minia University, Minia, Egypt Author
  • M. A. Abdel-Rahman Physics Department, Faculty of Science, Minia University, Minia, Egypt Author

DOI:

https://doi.org/10.56053/2.2.83

Keywords:

Dislocation, Alloys, Analysis

Abstract

This work describes cold work effect on the positron annihilation parameters, which are used in determination of the stored dislocation energy of the investigated 6082 Al-alloy samples. The investigated samples were homogenized for 6 h at 723 K then annealed at room temperature and finally plastically deformed up to 23 % degree of deformation. The annihilation parameters of the alloys under investigation were determined using the trapping model after fitting with the experimental measured data of the positron annihilation lifetime. 12% thickness reduction was found to be the start of saturation trapping region of positron in defect states at which an annihilation lifetime value of about 209±4 ps is obtained.A trapping efficiency of 6×10-7 cm3s-1 gives the best fit of the experimental measurements with the theoretical mean lifetime values obtained using the trapping model. The stored dislocation energy can be determined from the data of the positron annihilation lifetime due its ability to determine the density dislocation during plastic deformation. An increase in the strain (degree of deformation) creates comparable increase in both defect and dislocation densities, hence an increase in the measured stored dislocation energy. Maximum stored dislocation energy of about 29.5 KJ/m3 was obtained at the region of saturation of dislocation.

References

-[1] Priester, L., Couzinié, J. P., & Décamps, B. Advanced Engineering Materials, 12(10), (2010) 1037.‏

-[2] Kator, L., & Nyulas, P. Strength of Materials, 3(1), (1971), 28-31.‏

-[3] Benzerga, A. A., Brechet, Y., Needleman, A., & Van der Giessen, E. Acta Materialia, 53(18), (2005), 4765.‏

-[4] Hajizadeh, K., Alamdari, S. G., & Eghbali, B. Physica B: Condensed Matter, 417, (2013), 33.‏

-[5] Bever, M. B., Holt, D. L., & Titchener, A. L. Progress in materials science, 17, (1973), 5.‏

-[6] Anand, L., Gurtin, M. E., & Reddy, B. D. International Journal of Plasticity, 64, (2015), 1.‏

-[7] Setman, D., Schafler, E., Korznikova, E., & Zehetbauer, M. J. Materials Science and Engineering: A, 493(1), (2008), 116.‏

-[8] Cízek, J., Procházka, I., Kmjec, T., & Vostry, P. Physica Status Solidi A Applied Research, 180(2), (2000), 439.‏

-[9] Pandey, B., Nambissan, P. M. G., Suwas, S., & Verma, H. C. Journal of magnetism and magnetic materials, 263(3), (2003), 307.‏

-[10] Salah, M., Abdel-Rahman, M., Badawi, E. A., & Abdel-Rahman, M. A. International Journal of Modern Physics B, 30(18), (2016), 1650110.‏

-[11] Oshima, R., Hori, F., Fukuzumi, M., Komatsu, M., & Kiritani, M. Radiation effects and defects in solids, 157(1-2), (2002), 127.‏

-[12] Klobes, B., Maier, K., & Staab, T. E. M. Philosophical Magazine, 95(13), (2015), 1414.‏

-[13] Dekhtyar, I. Y., Levina, D. A., & Mikhalenkov, V. S. (1964, December). In Soviet Physics Doklady, 9, (1964), 492.‏

-[14] Berko, S., & Erskine, J. C. Physical Review Letters, 19(6), (1967), 307.‏

-[15] Hodges, C. H. Physical Review Letters, 25(5), (1970), 284.‏

-[16] Falciglia, F., Savio, F. L., Savio, M. L., Oliveri, M. E., & Patané, F. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 355(2-3), (1995), 537.‏

-[17] Mohammed Salah, M.Sc. thesis (2015) Nuclear Technique (Positron Annihilation Spectroscopy) to Study the Properties of Some Wrought Al-Alloys. Minia University, Egypt.

-[18] De Vries, J. (1987). Positron lifetime technique with applications in materials science (Doctoral dissertation, Delftse Universitaire Pers).‏

-[19] Kirkegaard, P., Pedersen, N., & Eldrup, M. (1989). PATFIT Program Risø-M-2740. RNL, Roskilde, Denmark.

-[20] Baram, J., & Rosen, M. Aphysica status solidi (a), 16(1), (1973), 263.‏

-[21] Titchener, A. L., & Bever, M. B. Progress in metal physics, 7, (1958), 247.‏

-[22] Baker, I., Liu, L., & Mandal, D. Scripta metallurgica et materialia, 32(2), (1995), 167.‏

-[23] Ashby, M. F. Philosophical Magazine, 21(170), (1970), 399.‏

-[24] Castro, S. F., Gallego, J., Landgraf, F. J. G., & Kestenbach, H. J. Materials Science and Engineering: A, 427(1), (2006), 301.‏

-[25] Zhou, F., Liao, X. Z., Zhu, Y. T., Dallek, S., & Lavernia, E. J. Acta Materialia, 51(10), (2003), 2777.

Downloads

Published

2018-04-15

Issue

Section

Articles

How to Cite

Estimation of the stored energy of dislocation for plastically deformed 6082 heat treatable Al-Alloy. (2018). Experimental and Theoretical NANOTECHNOLOGY, 2(2), 83-90. https://doi.org/10.56053/2.2.83