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Basically, miniaturized versions of robotic arms, micro and even nano robotic arms are the perfect 
candidate for performing accurate inspections at microscopic scales on structures. With relatively small 
actuators and sensors, they are ideal for looking for small defects and components.The growing 
challenges of robotization for a flexible and efficient industry require the development of reliable, 
precise, and efficient robotic systems. In this context, we propose an approach combining fuzzy logic 
and sliding modes to obtain robust, simple, and efficient control for a SCARA robot. Simulation results 
are presented to corroborate our claims.  
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1. INTRODUCTION 
 
Nanorobots are incredibly tiny, controllable machines built at the smallest molecular scale. The science 
of building them, called nanorobotics, is still new but takes ideas from regular robotics. Scientists are 
now starting to create these devices, often by copying designs found in nature. Today, their most 
important use is in medicine and healthcare. we present a comprehensive review of recent nanorobotics-
enabled biomedical applications, specifically addressing oncotherapy, cerebral aneurysm intervention, 
nephrolithiasis ablation/removal, and nanoscale DNA repair, as well as complementary therapeutic 
modalities that promise substantial reductions in mortality. The review analyzes structural designs, 
actuation schemes, control algorithms, biosafety and regulatory considerations, and translational 
pathways. Robotization underpins the capability of future industries and Industry 4.0 factories to meet 
rising demands and complexity. It can be considered a primary tool for flexible automation, not only by 
facilitating the accomplishment of repetitive and dangerous tasks, but also by increasing production 
efficiency and consistency. To attain these objectives, it is necessary to develop controllers that enable 
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robotic systems to combine speed and precision, which are antagonistic properties. Moreover, this type 
of system is subject to parametric variations, which makes the model used uncertain, and to external 
disturbances [1]. 
          
To address robustness concerns, sliding mode control has been extensively studied as a classical robust 
control methodology [1-2]. The main idea is to use two control signals. A discontinuous one drives the 
system state to a predefined sliding surface. The second signal keeps the system on the sliding surface 
and drives the states to zero. A well-designed sliding mode controller makes the system insensitive to 
counter matched disturbances and uncertainties as the state evolves along the sliding surface [3-6]. 
Nevertheless, the presence of chattering phenomena represents the main drawback of this approach, in 
addition to the knowledge of the system model. To solve these problems, sliding mode control has been 
fused with other techniques to create adaptive sliding-mode control [7-10], neural network sliding mode 
control [11-14], fuzzy sliding mode control [14-16]. A variety of approaches have been reported in the 
literature, including substituting the signum function with saturation. [18], using a fuzzy system [15-17], 
or employing a nonlinear sliding surface [18]. Chattering can be mitigated, but finite-time convergence 
to zero remains unresolved. 
 
In this sense, Terminal sliding mode control can be adopted for the problem of finite-time convergence 
[18-20]. However, due to the presence of fractional powers and their derivatives, terminal sliding mode 
control encounters a singularity problem, which prevents it from achieving convergence of tracking 
errors when the system states reach zero [22]. We developed a nonsingular fast terminal sliding-mode 
controller, offering the advantages of conventional terminal sliding mode control while significantly 
improving convergence speed and overcoming the singularity problem [23]. 
 
In this work, we introduce a new controller that combines the benefits of nonsingular fast terminal sliding 
mode control and interval type-2 fuzzy logic for the SCARA robot application. Type-2 fuzzy systems 
initially identify and estimate the unknown terms. The nonsingular terminal sliding mode control law is 
formulated to guarantee consistent convergence time and robust performance, and robustness. The type-
2 fuzzy systems are updated based on adaptation laws derived from stability analysis. Simulations 
demonstrate the proposed approach’s effectiveness [24-26]. 
 
The rest of the paper is organized as follows: Section 2 introduces interval type-2 fuzzy systems. Section 
3 describes the dynamic model of a SCARA robot. In Section 4, we discuss the controller design and the 
stability analysis. Section 5 presents the simulation study and results that demonstrate the effectiveness 
of the proposed approach. The paper concludes with a final conclusion. 
 
2. MATERIALS AND METHODS 
2.1 Interval Type-2 fuzzy logic system 
 
Interval type-2 fuzzy system (IT2FS is the most commonly used version of type-2 fuzzy systems (T2F) 
due to its simple design and reduced calculation time compared to the general form [18]. To reduce 
calculation time, we propose using triangular fuzzy sets in this work. An interval type-2 fuzzy set is 
characterized by its footprint of uncertainty (FOU), the region between the upper and lower membership 
functions, referred to as the footprint of uncertainty (FOU). μ�A�(x) and μA�(x). This is the footprint of 
uncertainty (FOU). Let M be the number of rules in the Type-2 fuzzy rule base, each written as the 
following form: 

Ri = IF x1   is  F�1 i and … … . xn    is  F�n i then y  is �wl
i wr

i � 

where xj = 1,2,3, … . . , n  and y are the input and output variables of the interval type-2 fuzzy system 
(T2FS), respectively, used for modeling, the 𝐹𝐹�𝑗𝑗 𝑖𝑖are the type-2 fuzzy sets constituting the antecedent part 
and �wl

i wr
i � The weighting interval is in the consequent part. Type-reduction converts a type-2 fuzzy 
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set to a type-1 set. Meanwhile, the firing strength𝐹𝐹𝑖𝑖  for the ith rule, an interval type-2 set, can be written 
as: 

Fi = �f i f i� 
where 
                    f i =  μF�1i (x1) ∗ … . .∗  μF�ni (xn)  

                   f i = μF�1i (x1) ∗ … . .∗  μF�ni (xn)  
Using the center-of-set type-reduction, we obtain the IT2FS output in the vectorized form presented 
below:     
y(x) =⩘T (x).ϕ    (1) 
where ⩘ (𝑥𝑥) represents the regressive vector, and ϕ denotes the consequent vector containing the 
conclusion values of the fuzzy rules. 
 
2.2 Dynamic model of SCARA robot 
 
Figure 2 represents a simplified structure of a SCARA robot; it has three rotational joints in the plane 
(X − Y). The three rotational actuators are labeled Shoulder, Elbow, and Wrist, in that order, per Figure 
1. The general Newton-Euler Equations for a manipulator can be written in the form: 
M(θ)θ̈ + V�θ, θ̇�θ̇ + G(θ) + τf = τ  (2) 
where θ, θ̇, θ̈ denote the position, velocity and acceleration n×1 vectors, respectively, M(θ) is the n×n , 
inertia matrix of the robot, V�θ, θ̇� is an n×n the centrifugal–Coriolis term matrix, and G(θ) is an n×1 
gravity-term vector, τf is the n×1 vector of external disturbances, and the n×1 vector 𝜏𝜏𝑓𝑓 represents 
actuator torques. Since we are focused on the three rotational joints, with motion constrained to the X−Y 
motion, The gravity-term vector reduces to zero as follows: 
G(θ) = 0 (3) 
Expressions of terms of Equation (1) are given in Appendix A. The dynamical model of our system can 
be rewritten as: 
θ̈ = −M−1(θ)V�θ, θ̇�θ̇ + M−1(θ)τ + M−1(θ)τf  (4) 
Equation (4) can be reformulated as follows: 
θ̈ = F�θ, θ̇� + Bo(θ)τ + τdis  (5) 
where F�θ, θ̇� =  −M−1(θ)V�θ, θ̇�θ ̇ , B0(θ) denotes the nominal well-known value of 𝑀𝑀−1(𝜃𝜃), and 
𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 regroups all external disturbances and uncertainties.  
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Figure 1 SCARA robot manipulator.                       Figure 2 Schematic diagram of the SCARA robot. 
                          
 
As given in [19], the most concise of  𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑 can be expressed in Equation (6) as: 
τdis ≤ b0 + b1|θ| + b2�θ̇�

2
  (6) 

where b0, b1 and b2 are strictly positive scalars. 
 
2.3 Design approach of NST sliding mode control law 
 
In this subsection, this work aims. A robust controller is designed using a nonsingular fast terminal 
sliding mode (NFTSM) approach to guarantee the desired tracking performance [3,24]. The tracking 
error is initially defined by: 
e1 = θd − θ 
e2 = θ̇d − θ̇   (7) 
where 𝜃𝜃𝑑𝑑 , 𝜃̇𝜃𝑑𝑑, represent the desired trajectory of 𝜃𝜃 and 𝜃̇𝜃 respectively. 
Then, the nonsingular terminal sliding can be written as:  
σ(t) = e1 + k1|e1|α1sign(e1) + k2|e2|α2sign(e2)  (8) 
where 𝑘𝑘1, 𝑘𝑘2,𝛼𝛼1 and 𝛼𝛼2 are positive scalars, with 1 < α2 < 2 and α2 < α1; sign(∙) designs the signum 
function defined as: 

sign(x) = �
1      if x > 0
0     if x = 0
−1  if x < 0

  

From Equation (7), the sliding surface is defined to enforce finite-time convergence to the desired 
trajectories. When initial conditions are far from the target, convergence speed is governed by the 
dominant term k1|e1|α1sign(e1) Near the target, the term k2|e2|α2sign(e2) ensures convergence in 
finite time [22,27] . As time passes, the sliding surface's derivative becomes: 
σ̇(t) = e2 + α1 ∙ k1|e1|α1−1e2 + α2 ∙ k2|e2|α2−1 ∙ e2̇  (9) 
 
As explained above, the control signal will consist of two terms. The first one, τs(t), the switching signal, 
denoted as τs(t), has the objective of driving the system back to surface. The second term, τe(t) 
Equivalent control is employed to sustain the trajectory on the sliding surface. (7). To design τe(t), We 
assume that the system resides on the sliding surface., σ(t) = 0, and remains on, σ̇(t) = 0 . Thus, the 
system is invariant to uncertainties and external disturbances [9]. Using Equations (6) and (8), Equation 
(9) can be rewritten as: 
σ̇(t) = e2 + α1 ∙ k1|e1|α1−1e2 + α2 ∙ k2|e2|α2−1 ∙ θ̇d − α2 ∙ k2|e2|α2−1 ∙ �F�θ, θ̇� + Bo(θ)τe�  (10) 

https://askaichat.app/chat/1765893986945
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Using the fact that 𝑥̇𝑥 = |𝑥̇𝑥| ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥̇𝑥) The expression for the equivalent control law is given by: 

𝛕𝛕𝐞𝐞(𝐭𝐭) = 𝐁𝐁𝟎𝟎−𝟏𝟏(𝛉𝛉)�𝐅𝐅�𝛉𝛉, 𝛉̇𝛉� + 𝛉̈𝛉𝐝𝐝 + [𝛂𝛂𝟐𝟐 ∙ 𝐤𝐤𝟐𝟐]−𝟏𝟏 ∙ |𝐞𝐞𝟐𝟐|𝟐𝟐−𝛂𝛂𝟐𝟐� + [𝛂𝛂𝟐𝟐 ∙ 𝐤𝐤𝟐𝟐]−𝟏𝟏|𝐞𝐞𝟐𝟐|𝟐𝟐−𝛂𝛂𝟐𝟐(𝛂𝛂𝟏𝟏 ∙
𝐤𝐤𝟏𝟏|𝐞𝐞𝟏𝟏|𝛂𝛂𝟏𝟏−𝟏𝟏)𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬(𝐞𝐞𝟐𝟐)]   (11) 

The switching signal expression is derived as follows: 𝜏𝜏𝑠𝑠(𝑡𝑡) aimed at ensuring the system reaches the 
sliding surface under uncertainties and disturbances. Incorporating the disturbance term, Equation (9) 
becomes: τdis(t): 
σ̇(t) = e2 + α1 ∙ k1|e1|α1−1e2 + α2 ∙ k2|e2|α2−1 ∙ θ̈d − α2 ∙ k2|e2|α2−1 ∙ �F�θ, θ̇� + Bo(θ)τe + τdis�  
……………………………………………………………………………………………………… (12) 
Using Equation (11), the time derivative of the sliding surface in Equation (12) may be rewritten as: 
σ̇(t) = e2 + α1 ∙ k1|e1|α1−1e2 + α2 ∙ k2|e2|α2−1 ∙ θ̈d −α2 ∙ k2|e2|α2−1 ∙ [F + Bo(θ) ∙ (τe + τs) + τdis]  
………………………………………………………………………………………………………  (13) 
        
Applying the definition of equivalent control yields, 𝜏𝜏𝑒𝑒(𝑡𝑡) in Equation (11), Equation (13) This can be 
simplified to: 
σ̇(t) =  −α2 ∙ k2|e2|α2−1 ∙ [Bo(θ) ∙ τs + τdis]  (14) 
 
To deduce the expression of 𝜏𝜏𝑠𝑠 . This enables us to drive the system to the sliding surface. To analyze 
stability, consider the following Lyapunov function: 
V(t) = 0.5 σ2(t)   (15) 
𝑉𝑉(𝑡𝑡) in Equation (15), according to time and using Equation (14) leads to: 
V̇(t) = σ(t)[α2 ∙ k2|e2|α2−1 ∙ [Bo(θ) ∙ τs + τdis]]   (16) 
If we choose the switching signal 𝜏𝜏𝑠𝑠(𝑡𝑡) as: 
τs(t) = B0

−1(θ)[ a1 ∙ σ(t) + (a2 + b0 + b1|θ| +b2�θ̇�
2

)sign(σ(t))]  (17) 
where  (𝑎𝑎1, 𝑎𝑎2) > 0. The time derivative of the Lyapunov function becomes: 
V̇(t) = σ(t)[− α2 ∙ k2|e2|α2−1 ∙ [Bo(θ) ∙ τs + τdis]] 
          =  σ(t)[− α2 ∙ k2|e2|α2−1 ∙  [a1 ∙ σ(t) + (a2 + b0 + b1|θ| +b2�θ̇�

2
)sign�σ(t)� + τdis]   (18) 

          = − α2 ∙ k2|e2|α2−1 ∙ [ a1 ∙ σ2(t) + �a2 + b0 + b1|θ|  + b2�θ̇�
2
� |σ(t)| + σ(t)τdis] 

Using the assumption from Equation (6): 
V̇(t) ≤   α2 ∙ k2|e2|α2−1 ∙ [ a1α2(t) +  a2|σ(t)| ]  (19) 
 
Based on the Lyapunov theorem, using Equations (11) and (17), Convergence to the sliding surface is 
guaranteed𝜎𝜎(𝑡𝑡) and its maintenance on the surface. To demonstrate finite-time convergence, we consider 
the preceding analysis. 
V̇(t) ≤  − a1 α2 ∙ k2|e2|α2−1 ∙ α2(t) −  a2α2k2|e2|α2−1|σ(t)| 
V̇(t) = dV(t)

dt
≤ −2− a1 α2 ∙ k2|e2|α2−1 V(t) − √2 α2(t) −  a2α2k2|e2|α2−1 V0.5(t)   (20) 

dV(t)
dt

≤  − β1V(t) −  β2V0.5(t) 
Therefore, we can obtain: 
𝑑𝑑t ≤  −dV(t)

β1V(t)+ β2V0.5(t)
=  −2 dV0.5(t)

β1V0.5(t)+ β2
   (21) 

Let’s define t = tc as the instant of system convergence to 0; integrating the above inequality and its 
simplification allows us to obtain: 
tc ≤

2
β1

ln (β1V
0.5(0)+ β2
β2

)    (22) 
We can conclude that using the control law τ(t) = τe + τs (defined by their expressions in Equations 
(11) and (17) The closed-loop system is asymptotically stable with finite-time convergence to the desired 
trajectories.  tc. However, since this term τdis regroups unknown uncertainties and external disturbances, 
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calculating terms b0, b1 and b2 is very difficult and complex. Furthermore, the term F�θ, θ̇� can also 
contain uncertain terms like masses. To address this, we approximate them using four Type-2 Fuzzy 
Logic Systems (T2FLS) as follows: 
F��θ, θ̇� = ΛFT(t) ∙  ΦF( θ, θ ̇ )  
b�0 = Λ0T(t) ∙  Φ0( θ,  θ ̇ ) (23) 
b�1 = Λ1T(t) ∙  Φ1( θ,θ ̇ )  
b�2 = Λ2T(t) ∙  Φ2( θ, θ̇) 
 
Per the universal approximation theorem, [4,28], there exists an optimal value of the interval type-2 
fuzzy linguistic system (IT2FLS), which can be expressed as: 
F�θ, θ̇� = ΛFT(t) ∙  ΦF

∗(θ, θ̇)  
b0 = Λ0T(t) ∙ Φ0

∗(θ, θ̇)  
b1 = Λ1T(t) ∙ Φ1

∗(θ, θ̇)   (24) 
b2 = Λ2T(t) ∙ Φ2

∗(θ, θ̇) 
       
where ΦF

∗(θ, θ̇), Φ0
∗(θ, θ̇), Φ1

∗(θ, θ̇) and Φ2
∗(θ, θ̇) represent the optimal values of 

ΦF(θ, θ̇), Φ0(θ, θ̇),Φ1(θ, θ̇)  and Φ2(θ, θ̇) respectively. Using Equation (23), the control becomes: 
τ(t) = τe + τs 
  
τe = B0

−1(t)[ −F��θ, θ̇� + θ̈d +[ α2 ∙ k2]−1|e2|2−α2sign(e2) +[ α2 ∙ k2]−1|e2|2−α2 α1 ∙
|e1|α1−1sign(e2) ] 
τs = B0

−1(θ)[ a1σ(t) + (a2 + b0� + b1�|θ| +b2��θ̇�
2

)sign(σ(t))]  (25) 
 
The ability of IT2FS to approximate any continuous function and the efficiency of sliding mode control 
to handle uncertainties allow the modified control laws in Equation (25) to ensure the same performances 
obtained in a classical case. To obtain the modification laws for the three adaptive fuzzy systems, we 
use apropos of the Lyapunov function: 
V(t) = 0.5σ2(t) + α2∙k2

2γF
(Φi

∗ − Φi)T(ΦF
∗ − ΦF) +α2k2 ∑ (Φi

∗ − Φi)T(Φi
∗ − Φi)3

i=0   (26) 

𝛷̇𝛷𝐹𝐹 = 𝛾𝛾𝛾𝛾𝛾𝛾(𝑡𝑡)|𝑒𝑒2|𝛼𝛼2−1𝛬𝛬𝐹𝐹  
𝛷̇𝛷0 = 𝛾𝛾0|𝜎𝜎(𝑡𝑡)||𝑒𝑒2|𝛼𝛼2−1𝛬𝛬0  
Φ̇1 = γ1|σ(t)||e2|α2−1|e1|Λ1    (27) 
Φ̇2 = γ2|σ(t)||e2|α2Λ2              
 
Equation (26) It follows that the time derivative of the Lyapunov function can be written as: 
V̇(t) ≤  α2 ∙ k2|e2|α2−1 [ −a1σ2(t) −  a2|σ(t)| ] ≤ 0          (28)    
 
 
3. SIMULATION AND RESULTS 

To evaluate the performance, a simulation of a SCARA robot, whose parameters are listed in Table 1, is 
conducted. 

Table 1 Robot parameters and their value. 
 

Axis 𝐑𝐑𝐢𝐢 𝐋𝐋𝐢𝐢 𝐈𝐈𝐢𝐢 𝐦𝐦𝐢𝐢 
Axis 1 (Shoulder) 0.25𝑚𝑚 0.073𝑚𝑚 0.065𝐾𝐾𝐾𝐾𝑚𝑚2 6.32𝐾𝐾𝐾𝐾 
Axis 2 (Elbow) 0.25𝑚𝑚 0.090𝑚𝑚 0.056𝐾𝐾𝐾𝐾𝑚𝑚2 5.51𝐾𝐾𝐾𝐾 
Axis 3 (Wrist) 0.25𝑚𝑚 0.11𝑚𝑚 0.011𝐾𝐾𝐾𝐾𝑚𝑚2 1.37𝐾𝐾𝐾𝐾 
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To design the control laws in Equation (25), we must first construct the IT2FS: 
𝐹𝐹��𝜃𝜃, 𝜃̇𝜃� is a 3X1 matrix whose parameters depend on both 𝜃𝜃 and 𝜃̇𝜃. We note that 𝜃𝜃 and 𝜃̇𝜃 are 3×1 vectors. 
To reduce the computation time, we propose to use 3IT2 fuzzy sets for each input �𝜃𝜃, 𝜃̇𝜃� in the form 
given in Figure 3. This structure of fuzzy sets is easy to implement with a reduced computing time.  
 
The parameters 𝑎𝑎�0,𝑎𝑎�1 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎�2, are constructed by considering the sliding surface 𝜎𝜎(𝑡𝑡) and for the 
derivative of time 𝜎̇𝜎(𝑡𝑡) as inputs, which allows to simplify the design procedure. computing time, we 
use IT2 fuzzy sets in the form given in (Figure 3) and we consider ⩘0=⩘1=⩘2. The initial values of the 
adjustable vectors 𝛷𝛷𝑖𝑖. Given by Equation (23) can be chosen equal to zero, or we can use the nominal 
model of our system to deduce these values as indicated in [21]. 

 
To test our controller, we consider parametric variations both in the masses 𝑚𝑚𝑖𝑖 and lengths 𝐿𝐿𝑖𝑖, along 
with external disturbances. Figures 4 to 6 illustrate the tracking errors of the three joints for two different 
reference trajectories. We observe that these tracking errors converge to drive the state to zero within f 
or uncertainties and external disturbances, it will be a finite time, which meets the objectives of our 
approach. Furthermore, the shape of these curves makes it possible to confirm that the system’s response 
is free from chattering. 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

Figure 3 Triangular Type-2 fuzzy sets. 
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Figure 4 Tracking error on the shoulder joint.           Figure 5 Tracking error on the elbow joint. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 6 Tracking error on the wrist joint. 
 
4. CONCLUSIONS 
 
In this work, we combine the performance of a fast-modelling control with the capabilities of interval 
type-2 fuzzy logic to design a control for a robot. Demonstrated, for the closed-loop system with this 
control, by the theoretical claims and the results are provided to support. Despite these positive results, 
we aim to further enhance the implementation by using bio-inspired algorithms to optimize the 
parameters. 
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APPENDIX A 
 
Dynamical Model of SCARA Robot 
The expression of the used matrices in the dynamical model of the SCARA robot (1). 
 

M =

�
M11 M12 M13
M21 M22 M23
M31 M32 M33

�      

V

=  �
V11 V12 V13
V21 V22 V23
V31 V32 V33

� 

 
M11 = (I1 + I2 + I3) + m1L12 + m2(L22 + R1

2 − 2L2R1 cos(θE) + m3(L32 + R2
2 + R1

2 −
2L3R2 cos(θW) + 2L3R1cos (θE + θW) −2R1R2cos (θE)) 
 
M12 = (I2 + I3) + m2(L22 − L2R1 cos(θE) +m3(L32 + R2

2 + 2L3R2 cos(θE) + m3(L32 + R2
2 +

2L3R2 cos(θE) + L3R1 cos(θE + θW) − R2R1 cos(θE))  
M13 = I3 + m2(L22 + L3R2 cos(θW)) +L3R1 cos(θE + θW))  
 
M21 = (I2 + I3) + m2(L22 + L2R1 cos(θE)) − m3(L32 + R2

2 + 2L3R2 cos(θW)) 
+L3R1 cos(θE + θW) + R1R2 cos(θE))  
 
M22 = (I2 + I3) + m2L22  +m3(L32 + R2

2 + 2L3R2 cos(θW))  
 
M23 = I3 + m3(L32 + L3R2 cos(θW))  
 
M31 = I3 + m3L32 + m3L3R2 cos(θW)) +m3L3R1 cos(θE + θW))  
 
M32 = I3 + m3L32 + m3L3R2 cos(θW))  
 
M33 = I3 + m3L32   
 
V11 = (2L3R1m3sin(θE + θW) + 2L2R1m2sin(θE) +2R1R2m3sin(θE))θ̇E 
−(2L3R1m3sin(θE + θW) + 2L3R2m3sin(θW))θ̇W  
 
V12 = (− L3R1m3sin(θE + θW) − 2L2R1m2sin(θE) − 2R1R2m3sin(θE))θ̇E  
 
V13 = (− 2L3R1m3sin(θE + θW) − 2L3R2m3sin(θE))θ̇E − L3R1m3sin(θE + θW) +
L3R2m3sin(θW)θ̇W  
 
V21 = (L3R1m3sin(θE + θW) + L2R1m2sin(θE) +R1R2m3sin(θE))θ̇S  
 
V22 = −2L3R2m3sin(θW)θW  
 
V23 = −2L3R2m3sin(θW)θ̇S − L3R2m3sin (θW)θ̇W  
 
V31 = (L3R1m3sin(θW + θW) + L3R2m3sin(θW)θ̇S  
 
V32 = 2L3R2m3sin(θW)θ̇S + L3R2m3sin (θW)θ̇E  
V33 = 0  
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