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A fuzzy sliding mode control for a robotic system
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Basically, miniaturized versions of robotic arms, micro and even nano robotic arms are the perfect
candidate for performing accurate inspections at microscopic scales on structures. With relatively small
actuators and sensors, they are ideal for looking for small defects and components.The growing
challenges of robotization for a flexible and efficient industry require the development of reliable,
precise, and efficient robotic systems. In this context, we propose an approach combining fuzzy logic
and sliding modes to obtain robust, simple, and efficient control for a SCARA robot. Simulation results
are presented to corroborate our claims.
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1. INTRODUCTION

Nanorobots are incredibly tiny, controllable machines built at the smallest molecular scale. The science
of building them, called nanorobotics, is still new but takes ideas from regular robotics. Scientists are
now starting to create these devices, often by copying designs found in nature. Today, their most
important use is in medicine and healthcare. we present a comprehensive review of recent nanorobotics-
enabled biomedical applications, specifically addressing oncotherapy, cerebral aneurysm intervention,
nephrolithiasis ablation/removal, and nanoscale DNA repair, as well as complementary therapeutic
modalities that promise substantial reductions in mortality. The review analyzes structural designs,
actuation schemes, control algorithms, biosafety and regulatory considerations, and translational
pathways. Robotization underpins the capability of future industries and Industry 4.0 factories to meet
rising demands and complexity. It can be considered a primary tool for flexible automation, not only by
facilitating the accomplishment of repetitive and dangerous tasks, but also by increasing production
efficiency and consistency. To attain these objectives, it is necessary to develop controllers that enable
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robotic systems to combine speed and precision, which are antagonistic properties. Moreover, this type
of system is subject to parametric variations, which makes the model used uncertain, and to external
disturbances [1].

To address robustness concerns, sliding mode control has been extensively studied as a classical robust
control methodology [1-2]. The main idea is to use two control signals. A discontinuous one drives the
system state to a predefined sliding surface. The second signal keeps the system on the sliding surface
and drives the states to zero. A well-designed sliding mode controller makes the system insensitive to
counter matched disturbances and uncertainties as the state evolves along the sliding surface [3-6].
Nevertheless, the presence of chattering phenomena represents the main drawback of this approach, in
addition to the knowledge of the system model. To solve these problems, sliding mode control has been
fused with other techniques to create adaptive sliding-mode control [7-10], neural network sliding mode
control [11-14], fuzzy sliding mode control [14-16]. A variety of approaches have been reported in the
literature, including substituting the signum function with saturation. [18], using a fuzzy system [15-17],
or employing a nonlinear sliding surface [18]. Chattering can be mitigated, but finite-time convergence
to zero remains unresolved.

In this sense, Terminal sliding mode control can be adopted for the problem of finite-time convergence
[18-20]. However, due to the presence of fractional powers and their derivatives, terminal sliding mode
control encounters a singularity problem, which prevents it from achieving convergence of tracking
errors when the system states reach zero [22]. We developed a nonsingular fast terminal sliding-mode
controller, offering the advantages of conventional terminal sliding mode control while significantly
improving convergence speed and overcoming the singularity problem [23].

In this work, we introduce a new controller that combines the benefits of nonsingular fast terminal sliding
mode control and interval type-2 fuzzy logic for the SCARA robot application. Type-2 fuzzy systems
initially identify and estimate the unknown terms. The nonsingular terminal sliding mode control law is
formulated to guarantee consistent convergence time and robust performance, and robustness. The type-
2 fuzzy systems are updated based on adaptation laws derived from stability analysis. Simulations
demonstrate the proposed approach’s effectiveness [24-26].

The rest of the paper is organized as follows: Section 2 introduces interval type-2 fuzzy systems. Section
3 describes the dynamic model of a SCARA robot. In Section 4, we discuss the controller design and the
stability analysis. Section 5 presents the simulation study and results that demonstrate the effectiveness
of the proposed approach. The paper concludes with a final conclusion.

2. MATERIALS AND METHODS
2.1 Interval Type-2 fuzzy logic system

Interval type-2 fuzzy system (IT2FS is the most commonly used version of type-2 fuzzy systems (T2F)
due to its simple design and reduced calculation time compared to the general form [18]. To reduce
calculation time, we propose using triangular fuzzy sets in this work. An interval type-2 fuzzy set is
characterized by its footprint of uncertainty (FOU), the region between the upper and lower membership
functions, referred to as the footprint of uncertainty (FOU). iz and pzy). This is the footprint of

uncertainty (FOU). Let M be the number of rules in the Type-2 fuzzy rule base, each written as the
following form:

RI=1Fx, is F{and.....x, is Fltheny is[wi wi]
where x; = 1,2,3,.....,n and y are the input and output variables of the interval type-2 fuzzy system
(T2FS), respectively, used for modeling, the Fjiare the type-2 fuzzy sets constituting the antecedent part
and [wll w}] The weighting interval is in the consequent part. Type-reduction converts a type-2 fuzzy
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set to a type-1 set. Meanwhile, the firing strengthF; for the ith rule, an interval type-2 set, can be written
as:
F=fif 7
where
fl= pFiGa) * oo R GK)

fl = pFl(x) * ooooox pFh(xy)
Using the center-of-set type-reduction, we obtain the IT2FS output in the vectorized form presented
below:
y() =" (). b (1)
where /1 (x) represents the regressive vector, and ¢ denotes the consequent vector containing the
conclusion values of the fuzzy rules.

2.2 Dynamic model of SCARA robot

Figure 2 represents a simplified structure of a SCARA robot; it has three rotational joints in the plane
(X =Y). The three rotational actuators are labeled Shoulder, Elbow, and Wrist, in that order, per Figure
1. The general Newton-Euler Equations for a manipulator can be written in the form:
M(0)8+V(0,0)0 +G(O®) + Tt =T (2)
where 0, 8, 8 denote the position, velocity and acceleration nx1 vectors, respectively, M(8) is the nxn,
inertia matrix of the robot, V(G, G) is an nxn the centrifugal-Coriolis term matrix, and G(0) is an nx1
gravity-term vector, T¢ is the nx1 vector of external disturbances, and the nx1 vector 7f represents
actuator torques. Since we are focused on the three rotational joints, with motion constrained to the X—Y
motion, The gravity-term vector reduces to zero as follows:

G®) =0 3)
Expressions of terms of Equation (1) are given in Appendix A. The dynamical model of our system can
be rewritten as:

0=-M"1(0)V(6,6)0 + M 1(B)t + M 1(0)1; 4)
Equation (4) can be reformulated as follows:
0 =F(6,0) + B, (0)T + Tqis (5)

where F(8,0) = —M~1(0)V(6,0)6, B, () denotes the nominal well-known value of M~1(8), and
Tgais regroups all external disturbances and uncertainties.
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Figure 1 SCARA robot manipulator. Figure 2 Schematic diagram of the SCARA robot.

As given in [19], the most concise of ;i can be expressed in Equation (6) as:

.12
Tgis < b + b1 (0] + b, 6| (6)
where by, b; and b, are strictly positive scalars.

2.3 Design approach of NST sliding mode control law

In this subsection, this work aims. A robust controller is designed using a nonsingular fast terminal
sliding mode (NFTSM) approach to guarantee the desired tracking performance [3,24]. The tracking
error is initially defined by:

e = Gd -0

e,=04—0 (7)
where 6,4, 8, represent the desired trajectory of 8 and 6 respectively.

Then, the nonsingular terminal sliding can be written as:

o(t) = e; + ky|e,|*tsign(e;) + k|e,|“2sign(e,) (®)
where k4, k,, a1 and a, are positive scalars, with 1 < a, < 2 and a, < ay; sign(+) designs the signum
function defined as:

1 ifx>0
sign(x) =40 ifx=0
—1ifx<0

From Equation (7), the sliding surface is defined to enforce finite-time convergence to the desired
trajectories. When initial conditions are far from the target, convergence speed is governed by the
dominant term k;|e;|*tsign(e;) Near the target, the term Kk,|e,|“2sign(e,) ensures convergence in
finite time [22,27] . As time passes, the sliding surface's derivative becomes:

6(t) = e; + ay - kyleq|*17 e, + ay - kplep| %27 - €, 9)

As explained above, the control signal will consist of two terms. The first one, t4(t), the switching signal,
denoted as t4(t), has the objective of driving the system back to surface. The second term, T.(t)
Equivalent control is employed to sustain the trajectory on the sliding surface. (7). To design t.(t), We
assume that the system resides on the sliding surface., o(t) = 0, and remains on, 6(t) = 0 . Thus, the
system is invariant to uncertainties and external disturbances [9]. Using Equations (6) and (8), Equation
(9) can be rewritten as:

6(t) = ep + 0y " Kqleg |7 e, + oy  Kplez| %27 - B9 — ay - Kyle, %27 - [F(6,0) + Bo(0)Te ] (10)
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Using the fact that x = |x| - sign(x) The expression for the equivalent control law is given by:

Te(t) = By (0)[F(6,0) + 04 + [z - K] 71 - |€2]27%2] + [a - k2] ez |72 (aty -
kqleq|*1"1)sign(e,)] (11)
The switching signal expression is derived as follows: 7,(t) aimed at ensuring the system reaches the
sliding surface under uncertainties and disturbances. Incorporating the disturbance term, Equation (9)
becomes: Tg;s(t):
6(t) = ey + oy " Kyleg[“7 e, + ay - kyley| %271 -0y — ay - Ky e |27 [F(e' 6) + Bo(8)Te + Tdis]
..................................................................................................................... (12)
Using Equation (11), the time derivative of the sliding surface in Equation (12) may be rewritten as:
6(t) = e; + oy " Kyleg |17 e, + 0y - Kplen|®27 - B —ay < Kplep |27t [F + B, (8) * (Te + Ts) + Tais]
..................................................................................................................... (13)

Applying the definition of equivalent control yields, 7, (t) in Equation (11), Equation (13) This can be
simplified to:
6(t) = —U; 'kzlezlaz_l ' [Bo(e) "Ts + Tdis] (14)

To deduce the expression of 75 . This enables us to drive the system to the sliding surface. To analyze
stability, consider the following Lyapunov function:

V(t) = 0.5 6%(t) (15)
V(t) in Equation (15), according to time and using Equation (14) leads to:
V() = o(D)[az - kylea|*271 - [Bo(8) - Ts + Taisl] (16)
If we choose the switching signal 7,(t) as:

- 212N
T5(t) = Bo'(0)[a; - o(t) + (az + by + by 6] +b2|9| )sign(o(t))] (17)

where (a4, a,) > 0. The time derivative of the Lyapunov function becomes:

V(®) = o(t)[— oz - kplez]| 2™ - [Bo(8) * Ts + Tqis]]
= o()[— az - kplez|*>7* - [ar - o(t) + (az + bg + by 6] +b2|9|2)sign(0(t)) + Tais] (18)
= —az kalez |7 [a; - 0%(0) + (az + bo + b1 6] +b5[8]") [o(D)] + o(D)ras]

Using the assumption from Equation (6):

V() < 0y - kplep| ™ - [a;0%(8) + azlo(t)]] (19)

Based on the Lyapunov theorem, using Equations (11) and (17), Convergence to the sliding surface is
guaranteedo (t) and its maintenance on the surface. To demonstrate finite-time convergence, we consider
the preceding analysis.

V() € —a; oy Kalep|®27h - (1) — ayak,len| %2 o (b))

V() =52 < —2-a; @y - kolep [T V() — V2 @3(1) — az05k, ey 2 VOS(t) (20)
dv(t)
arTa BiV(D) — BVO (D)
Therefore, we can obtain:
—dv(t) dvos(t)
< —— = _2 — -
dt< B1V(D+ B2VO3(D) B1VO3(D+ B2 D

Let’s define t = t, as the instant of system convergence to 0; integrating the above inequality and its
simplification allows us to obtain:

0.5
t, < =1In (M) 22)
B1 B2

We can conclude that using the control law t(t) = T + T¢ (defined by their expressions in Equations
(11) and (17) The closed-loop system is asymptotically stable with finite-time convergence to the desired
trajectories. t.. However, since this term tg;5 regroups unknown uncertainties and external disturbances,
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calculating terms b,, b; and b, is very difficult and complex. Furthermore, the term F(G, 9) can also
contain uncertain terms like masses. To address this, we approximate them using four Type-2 Fuzzy
Logic Systems (T2FLS) as follows:

F(6,6) = AL(D) - Pr(8, 6)

by = A (1) - Do(H, 0) (23)
b, = AT(t) - @4( 6,0)

b, = AZ(t) - @,(8,6)

Per the universal approximation theorem, [4,28], there exists an optimal value of the interval type-2
fuzzy linguistic system (IT2FLS), which can be expressed as:

F(6,8) = AF(t) - 5(6,6)

by = AH(D) - @;(6,0)

by = AT(D) - (6, 6) (24)
b, = AZ(D) - @3(8,6)

where ®5(0,0), @5(0,0), @;(0,60) and @3(0,0) represent the optimal values of
®r(6,0), Py(8,0),P,(6,0) and P, (8, 0) respectively. Using Equation (23), the control becomes:
() = Te + T

Te = Bal(t)[ —F(e, e) + éd +[ oy - kz]—llezlz—azsign(ez) _|_[ a, - kz]—llezlz—az o -
le1|*1 7 sign(ez) ]

_ o
15 = Bg1(0)[ a;0(t) + (az + by + by [8] +b,|8|)sign(c(t))] (25)

The ability of IT2FS to approximate any continuous function and the efficiency of sliding mode control
to handle uncertainties allow the modified control laws in Equation (25) to ensure the same performances
obtained in a classical case. To obtain the modification laws for the three adaptive fuzzy systems, we
use apropos of the Lyapunov function:

V(D) = 0.50%(0) + 22 (B — D)T(Df = P) otk To(@f — YT(D] — by) (26)
®p = yFo(t)|ey|*> *Ap

C?o = yola()lle,|*2714,

CP1 = v1lo()|lex|*2 ey [A4 (27)
&, =vzlo(D)|]ex|*2A,

Equation (26) It follows that the time derivative of the Lyapunov function can be written as:
V(D) < ap - Kalep|*7! [—a;0%(t) — aplo(®)]] <0 (28)
3. SIMULATION AND RESULTS

To evaluate the performance, a simulation of a SCARA robot, whose parameters are listed in Table 1, is
conducted.

Table 1 Robot parameters and their value.

AXis Ri Li Ii m;
Axis 1 (Shoulder) 0.25m 0.073m 0.065Kgm? 6.32Kg
Axis 2 (Elbow) 0.25m 0.090m 0.056Kgm? 5.51Kg
Axis 3 (Wrist) 0.25m 0.11m 0.011Kgm? 1.37Kg
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To design the control laws in Equation (25), we must first construct the IT2FS:
F (8, 9) is a 3X1 matrix whose parameters depend on both 6 and 8. We note that 8 and 6 are 3x1 vectors.

To reduce the computation time, we propose to use 3IT2 fuzzy sets for each input (9, 9) in the form
given in Figure 3. This structure of fuzzy sets is easy to implement with a reduced computing time.

The parameters d,, a4, and a,, are constructed by considering the sliding surface o(t) and for the
derivative of time & (t) as inputs, which allows to simplify the design procedure. computing time, we
use IT2 fuzzy sets in the form given in (Figure 3) and we consider 1,=A;=/1,. The initial values of the
adjustable vectors @;. Given by Equation (23) can be chosen equal to zero, or we can use the nominal
model of our system to deduce these values as indicated in [21].

To test our controller, we consider parametric variations both in the masses m; and lengths L;, along
with external disturbances. Figures 4 to 6 illustrate the tracking errors of the three joints for two different
reference trajectories. We observe that these tracking errors converge to drive the state to zero within f
or uncertainties and external disturbances, it will be a finite time, which meets the objectives of our
approach. Furthermore, the shape of these curves makes it possible to confirm that the system’s response
is free from chattering.

Figure 3 Triangular Type-2 fuzzy sets.
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Figure 4 Tracking error on the shoulder joint. Figure S Tracking error on the elbow joint.
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Figure 6 Tracking error on the wrist joint.
4. CONCLUSIONS

In this work, we combine the performance of a fast-modelling control with the capabilities of interval
type-2 fuzzy logic to design a control for a robot. Demonstrated, for the closed-loop system with this
control, by the theoretical claims and the results are provided to support. Despite these positive results,
we aim to further enhance the implementation by using bio-inspired algorithms to optimize the
parameters.
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APPENDIX A

Dynamical Model of SCARA Robot
The expression of the used matrices in the dynamical model of the SCARA robot (1).

M= \%

Mi; My, Mgs Vii. Viz Vi3
Mz1 M;, My = Va1 Vo Vo3
Mz; Mj; Mgj; Vi1 Viz Va3

2L3R, cos(By) + 2L3R cos (B + Byw) —2R;R,cos (0g))

2L3R; cos(Bg) + L3R, cos(0g + Byw) — RyR4 cos(0g))
M13 = 13 + m, (Lzz + L3R2 COS(ew)) +L3R1 COS(GE + ew))

M21 = (Iz + 13) + m, (Lzz + Lle COS(BE)) — mg3 (L% + R% + 2L3R2 COS(ew))
+L3R; cos(0g + Oy) + R{R;, cos(6g))

M,, = (I, + I3) + m,L3 +m3 (L3 + R3 + 2L3R, cos(By))

M,; = I3 + m3(L3 + L3R, cos(By))

M3, = I3 + m3l% + m3L3R, cos(Byy)) +m3L3R, cos(0g + By))
M3, = I3 + m3L3 + m3L3R, cos(By))

Mj; = I3 + m3l3

Vll S (2L3R1m351n(9E + ew) + 2L2R1m251n(eE) +2R1R2m351n(eE))éE
—(2L3R;m;sin(8g + Oy) + 2L3R,m3sin(0y))Bw

V12 S (_ L3R1m35in(eE + ew) - 2L2R1m251n(eE) - 2R1R2m351n(eE))eE

V13 S (_ 2L3R1m351n(9E + ew) - 2L3R2m351n(eE))éE - L3R1m35in(eE + ew) +
LR, m3sin(8y)0w

V,1 = (LzRym3sin(Bg + By ) + L,Rym,sin(0g) +R;R,m;sin(0g))0s
V,, = —2L3R,m3sin(0yy) 0wy

V,3 = —2L3R,m3sin(By)05 — LyR,mssin (By)Ow

Va1 = (LzRym3sin(By + 0y) + L3R,m3sin(0yy)0s

V32 S 2L3R2m351n(ew)és + L3R2m35in (GW)GE
V33 =0
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