Analytical studies of electrohydrodynamically TiO2 nanostructure

Authors

  • W. Gibbs Materials Engineering, The University of Queensland, Queensland 4072, Australia
  • M. Torris Materials Engineering, The University of Queensland, Queensland 4072, Australia

DOI:

https://doi.org/10.56053/3.1.103

Keywords:

TiO2, Analysis, Optical.

Abstract

In this paper, we report an alternate technique for the deposition of nanostructured TiO2 thin films using the electrohydrodynamic atomization (EHDA) technique us- ing polyvinylpyrrolidone (PVP) as a stabilizer. The required parameters for achieving uniform TiO2 films using EHDA are also discussed in detail. X-ray diffraction results con- firm that the TiO2 films were oriented in the anatase phase. Scanning electron microscope studies revealed the uniform deposition of the TiO2. The purity of the films is charac- terized by using Fourier transform infrared (FTIR) spec- troscopy and X-ray photoelectron spectroscopy (XPS), con- firming the presence of Ti–O bonding in the films without any organic residue. The optical properties of the TiO2 films were measured by UV-visible spectroscopy, which shows that the transparency of the films is nearly 85% in the visi- ble region. The current–voltage (I V ) curve of the TiO2 thin films shows a nearly linear behavior with 45 mQ cm of elec- trical resistivity. These results suggest that TiO2 thin films deposited via the EHDA method possess promising applications in optoelectronic devices.

References

-[1] C. Monat, B. Alloing, C. Zinoni, L.H. Li, A. Fiore, Nano Lett. 6, (2006) 1464

-[2] M. Krunks, A. Katerski, T. Dedova, I. Oja Acik, A. Mere, Sol. Energy Mater. Sol. Cells 92, (2008) 1016

-[3] K. Narashimha Rao, S. Mohan, J. Vac. Sci. Technol., A, Vac. Surf. Films 8, (1990) 3260

-[4] M.R. Hofmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95, (1995) 69

-[5] T. Fuyuki, H. Matsunami, Jpn. J. Appl. Phys. 25, (1986) 1288

-[6] A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, (1995) 735

-[7] C.-K. Jung, S.B. Lee, J.-H. Boo, S.-J. Ku, K.-S. Yu, J.-W. Lee, Surf. Coat. Technol. 174–175, (2003) 296

-[8] S. Takeda, S. Suzuki, H. Odaka, Thin Solid Films 392, (2001) 338

-[9] F. Zhang, N. Huang, P. Yang, Surf. Coat. Technol. 84, (1996) 476

-[10] D.J. Kim, J.O. Baeg, S.J. Moon, K.S. Kim, J. Nanosci. Nanotechnol. 9, (2009) 4285

-[11] N. Voudouris, G.N. Angelopoulos, Surf. Coat. Technol. 115, (1999) 38

-[12] C. Vahlas, B. Caussat, P. Serp, G.N. Angelopoulos, Mater. Sci. Eng., R Rep. 53, (2006) 1

-[13] K.S. Kim, D.J. Kim, J. Aerosol Sci. 37, (2006) 1532

-[14] A. Jaworek, A. Krupa, J. Aerosol Sci. 30, (1999) 873

-[15] A.M. Ganan-Calvo, J. Davila, A. Barrero, J. Aerosol Sci. 28, (1997) 249

-[16] C.J. Luo, S. Loh, E. Stride, M. Edirisinghe, Food Bioprocess. Technol. (2011). doi:10.1007/s11947-011-0534-6

-[17] S.N. Jayasinghe, M.J. Edirisinghe, J. Aerosol Sci. 33, (2002) 1379

-[18] S.N. Jayasinghe, M.J. Edirisinghe, J. Mater. Sci. Lett. 37, (2002) 1987

-[19] S. Mahalingam, M.J. Edirisinghe, Appl. Phys. A 89, (2007) 987

-[20] A.M. Ganan-Calvo, J. Davila, A. Barrero, J. Aerosol Sci. 28, (1997) 249

-[21] D. Wang, C. Song, Y. Lin, Z. Hu, Mater. Lett. 60, (2006) 77

-[22] K. Karthikeyan, N. Poornaprakash, N. Selvakumar, K. Jeyasubrmanian, J. Nanostruct. Polym. Nanocompos. 5, (2009) 83

-[23] J. Zhang, I. Boyd, B.J. O‘Sullivan, P.K. Hurley, P.V. Kelly, J.-P. Senateur, J. Non-Cryst. Solids 303, (2002) 134

-[24] P.K. Khanna, R. Gokhale, V.V.V.S. Subbarao, J. Mater. Sci. 39, (2004) 5956

-[25] R. Zhang, L. Gao, Key Eng. Mater. 224–226, (2002) 573

-[26] Y. Zhu, T. Liu, C. Ding, J. Mater. Res. 14(2), (1999) 444

-[27] W. Zhang, S. Zhu, Y. Li, F. Wang, J. Mater. Sci. Technol. 20, (2004) 31

-[28] K. Krishnamoorthy, R. Mohan, S.-J. Kim, Appl. Phys. Lett. 98, (2011) 244101

-[29] Y. Lei, L.D. Zhang, J.C. Fan, Chem. Phys. Lett. 338, (2001) 231

-[30] K. Mogyorosi, I. Dekany, J.H. Fendler, Langmuir 19, (2003) 2938

-[31] G. Lei, X. Mingxia, F. Haibo, S. Ming, Appl. Surf. Sci. 253, (2006) 720

-[32] A. Khan, K. Rahman, M.-T. Hyun, D.-S. Kim, K.H. Choi, Appl. Phys. A 104, (2011) 1113

-[33] A. Bearzotti, A. Bianco, G. Montesperelli, E. Traversa, Sens. Actuators Chem. B 19, (1994) 525

-[34] A. Orendorz, J. Wusten, C. Ziegler, H. Gnaser, Appl. Surf. Sci. 252, (2005) 85

-[35] W.G. Kim, S.W. Rhee, Microelectron. Eng. 86, (2009) 2153

-[36] M. Mourad Mabrook, Exp. Theo. NANOTECHNOLOGY 2 (2018) 103

Downloads

Published

2019-01-15

How to Cite

Gibbs, W., & Torris, M. (2019). Analytical studies of electrohydrodynamically TiO2 nanostructure. Experimental and Theoretical NANOTECHNOLOGY, 3(1), 103–113. https://doi.org/10.56053/3.1.103

Issue

Section

Articles